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It is shown that intrinsic localized modes in a nonlinear lattice with a hard quartic nonlinearity are governed
by the discrete Hirota equation. The requirement for the solution to be real results in a very restricted class of
admissible soliton solutions corresponding to the localized excitations. In particular, it is shown that a single-
soliton solution exists only at definite values of the amplitude and velocity. Two-soliton and multisoliton
localized-mode solutions are reperesented. A small parameter of the problem is discussed.
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I. INTRODUCTION

Since works@1# where the intrinsic localized modes were
obtained a great number of papers devoted to the subject has
been published. In spite of this, to the best of our knowledge,
a consistent mathematical theory of the highly localized so-
lutions on nonlinear lattices has not been elaborated, while in
most previous investigations various analytical approxima-
tions were verified numerically. Speaking about the self-
consistent theory we mean, first of all, a perturbative expan-
sion of the solutions with respect toonly small parameter at
all stages of the so-calledrotating wave approximation.
Therefore the first aim of the present paper is to provide such
an expansion.

The second purpose of the paper is to show that the in-
trinsic localized modes in the leading order aresolitons in
the narrow mathematical sense, i.e., that they are governed
by an exactly integrable equation~and in this sense they can
be considered as a counterpart of the envelope lattice solitons
@2#!. As a matter of fact, a deep relation of the intrinsic
localized modes with solutions of the Ablowitz-Ladik~AL !
model@3# has been realized in the papers@4,5#. However, no
one has yet reported directly obtaining the AL model starting
with a lattice Hamiltonian@see~1! below#. Here we fill the
gap in the theory and show that the most convenient analyti-
cal treatment of the intrinsic localized modes can be given in
terms of the discrete Hirota~DH! equation, which, mean-
time, is consistent with the AL model mentioned in@6,4#.
This will give us an explanation of the stability of the local-
ized modes observed in numerical experiments@7,8#, will

prove that they indeed are dynamical objects~this was no-
ticed in @6,4#!, and will allow us to represent multisoliton
solutions for highly localized modes.

The paper is organized as follows. In Sec. II we provide
the perturbative expansion, which corresponds to the method
usually referred to as the rotating wave approximation. Sec-
tion III is devoted to the discussion of various soliton solu-
tions. The outcomes are summarized in the Conclusion.

II. ROTATING WAVE APPROXIMATION

We study a monoatomic lattice described by the Hamil-
tonian

H5(
n

FM2 u̇n
21

K2

2
~un112un!

21
K4

4
~un112un!

4G ,
~1!

whereun5un(t) is a displacement of thenth atom having a
massM , K2 andK4 are harmonic and quartic anharmonic
force constants, correspondingly, and a dot stands for the
derivative with respect to time. Looking for a displacement
field which allows representation@6,4#

un112un52fn~ t !cos~kna2vt !, ~2!

fn(t) being an unknown function,k andv being constant
wave number and frequency, anda being a lattice constant,
one obtains the following dynamical equation forfn(t):
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3 1fn21
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Herecn5kna2vt is a ‘‘rotating’’ variable, andJ2,45K2,4/M .

*Also at Centro de Cieˆncias Matema´ticas, Universidade da Madeira, Prac¸a do Municı´pio, 9000 Funchal, Portugal. Electronic address:
konotop@dragoeiro.uma.pt
†Present address: Department of Information Systems, Faculty of Information Science, Osaka Institute of Technology, Hirakata, Osaka,

573-01, Japan.

PHYSICAL REVIEW E AUGUST 1996VOLUME 54, NUMBER 2

541063-651X/96/54~2!/2010~5!/$10.00 2010 © 1996 The American Physical Society



Let us define a small parameter,m, of the problem through the relations

fn111fn2122kfn5m f n , fn11fn212fn
25mgn , ~4!

wherek561, f n andgn are functions of the order offn andfn
2 , respectively:f n5O(fn) andgn5O(fn

2). Notice,a priori,
fn is not assumed to be small. Formulas~4!, which are assumed to be consistent, determine the basic approximation explored
below.

If we concentrate on the pointska5p/3 and ka52p/3, then the coefficient of sin(3cn) in ~3! describing the cubic
harmonic becomes zero. By using~4! it is not difficult to show that the last term in~3! is of the order ofmfn

3 if k is chosen
such that it is 1 forka52p/3 and is21 for ka5p/3. Hence taking into account that the respective term represents a cubic
harmonic we can drop it@9#.

Roughly speaking, after the above approximation the coefficients multiplied by the sine and cosine functions in~3!, being
simultaneously equated to zero, constitute a pair of equations determining both the space-time evolution of the localized
intrinsic modes, i.e.,fn , and the fundamental frequencyv, respectively@4,6#. ~It is assumed, of course, that these equations
are coordinated.! Then, the pointska5p/3,2p/3 may be considered as corresponding to particular points in the Brillouin zone
of the underlying harmonic lattice, at which mixing of the fundamental mode~or carrier wave, as it is sometimes called! with
higher harmonics~with frequency 3v) vanishes.

For the next step we introduce designations

an5f̈n2Dfn23J4@~fn111fn21!~fn11
2 1fn21

2 23fn
22fn11fn21!cos~ka!22fn

3#, ~5!

bn53J4@fn11
3 2fn21

3 23~fn112fn21!fn
2#sin~ka!, ~6!

D5v222~J21J!, ~7!

g259J4 /J2 , whereD andJ are real constants to be determined below. Then~3! is rewritten as

$22Jfn2J2cos~ka!~fn111fn21!~11g2fn
2!1an%coscn1$2vḟn1J2sin~ka!~fn112fn21!~11g2fn

2!1bn%sincn50.
~8!

Taking into account that all quantities in~8! are real, it is not difficult to conclude that the mentioned equation can be written
down in the complex form

$ i2Jfn1 iJ2cos~ka!~fn111fn21!~11g2fn
2!2 ian12vḟn1J2sin~ka!~fn112fn21!~11g2fn

2!1bn%e
icn1c.c.50.

~9!

The main advantage of the last equation comes from the
fact that atan[bn[0 it takes the form of the DH equation
integrable by means of the inverse scattering technique@10#.
This allows us to proceed in the following way. First, we
show that under the assumption that in the leading order
fn solves ~9! with an[bn[0 and subject to appropriate
choice of the solution the termsan and bn can be made
small enough. Then we represent various solutions for the
localized modes in the leading order as solitons of the DH
equation and discuss the small parameter of the problem.

To this end we notice that it is a direct consequence of~4!
thatbn5O(m3/2fn

3)1O(m2fn
2). In order to estimatean we

take into account that~4! implies f n111 f n2122k f n
5O(mfn). This allows us to obtain

f̈n5F J22v
cos~ka!G2@2k~fn111fn21!28fn#2Dfn

1O~m2fn!. ~10!

By choosing

D52k
J2
2

v2cos
2~ka! ~11!

we reduce~10! to

f̈n5mk
J2
2

2v2cos
2~ka! f n1O~m2fn!.

Hence the term under consideration is estimated as

an5mk
J2
2

2v2cos
2~ka! f n1O~m2fn!1O~mfn

3!. ~12!

As will be shown below,fn
25O(m) and that is whyan is

comparable with the nonlinear terms in~9! and cannot be
dropped. Meantime, looking for the solution of~9! in the
form

fn5fn
~0!1mfn

~1! , ~13!

wherefn
(0) andfn

(1) are of the order offn andfn
(1) solves

the equation
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we can eliminate the higher order contribution toan , with-
out any change~in the leading order! of the term in~8! which
is proportional to sincn . The last statement is a consequence
of the explicit form offn

(1) :

fn
~1!5

kJ2

2A3v2 (
m52`

`

f n2m@k~A322!# umu, ~15!

of the representation forf n , and of the fact that within the
accuracy accepted

2vḟn
~0!1J2sin~ka!~fn11

~0! 2fn21
~0! !5O~fn

3!.

One more important consequence of~15! to be mentioned
here is the fact that iffn

(0) is bounded in time and localized
in space, thenfn

(1) possesses the same properties.
Now introducing a complex function

qn5g expS i Jv t Dfn
~0! ~16!

we arrive at the conventional form of the DH equation,
which in the case at hand describes the particle displacement
field

q̇n1 i
J2
2v

cos~ka!~qn111qn21!~11uqnu2!1
J2
2v

sin~ka!

3~qn112qn21!~11uqnu2!50. ~17!

III. SOLITON SOLUTIONS FOR THE LOCALIZED
MODES

Let us analyze the ‘‘unperturbed’’ equation~17!. First, it
is interesting to mention that due to the special relation be-
tween the constant coefficients it is reduced to the AL model
by the substitutionqn5eiknaQn . However, in such a way the
rotating phasecn appears in the dynamical equation again
and the functionQn has an initial form different from that of
fn . Due to this reason in what follows we prefer to deal
with the DH equation rather than with the respective AL
model. Next, we notice that in spite of the fact that the DH
equation is integrable not all its solutions make physical
sense. A very strong restriction comes from the requirement
for fn to be real.

In order to explain the last statement let us consider some
points of the inverse scattering scheme applied to the DH
equation. A multisoliton solution can be written in the form
~see@11# where a multisoliton solution for the AL model is
represented!

qn5
2i

detD (
l51

N

clzl
n11detD ~ l !. ~18!

Here D is an N3N matrix with the element
Dkj5dk j14( l51

N a lk(n)a l j (n)ckc̄l (dk j being the Kronecker
delta and the bar standing for the complex conjugation!,
D ( l ) is obtained fromD by substituting thel th column in
D by col(z1

n21 , . . . ,zN
n21),

zm5exp~2wm1 ium!, ~19!

m51, . . . ,N, are eigenvalues of the problem

Fn115S z iq̄n

iqn z21DFn ~20!

placed inside the unit circle on the right half plane of the
complex z ~respectively,wm and um are real,wm.0 and
2p/2,um<p/2, see Fig. 1!,

a lm~n!5
~ z̄mzl !

n11

12~ z̄mzl !
2
, ~21!

and the coefficientscm depend on time according to the for-
mula

cm~ t !5cm~0!expF i t J2v cos~2um1ka!cosh~2wm!G
3expF t J2v sin~2um1ka!sinh~2wm!G . ~22!

In ~18! N is a number of eigenvalues of~20! in the right half
plane.

We are interested in solutions of the Cauchy problem~17!
subject to real initial conditions Imqn(0)50. The complexity
is allowed to appear with time only through the harmonic
exponent exp@i(J/v)t# @this gives a realfn

(0) , see~16!#. The
mentioned initial condition implies that~i! the eigenvalues
either appear only in complex conjugate pairs, say
um52um11 and wm5wm11 , or are placed on the real,
um50, or imaginaryum5 p/2 , axes, and correspondingly
~ii ! the respective coefficientscm(0) either satisfy the rela-
tion cm(0)52 c̄m11(0) or cm(0) is pure imaginary. Taking

FIG. 1. The polygons painted over correspond to regions where
the complex conjugate pairs (zm ,z̄m) can be chosen in order to
fulfill all the requirements imposed in the derivation of the DH
equation. The regions near the imaginary and real axes correspond
to the carrier wave numbersp/3 and 2p/3. By;Am we emphasize
the characteristic scale of the respective regions.
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into account thatzm does not depend on time, from the ex-
plicit form ~18! one concludes that the above requirements
for the solution of the DH equation are fulfilled if
cm(t)5 c̃m(t)exp@i(J/v)t#, where in the case of complex
conjugate pairsc̃m(t) holds the propertyc̃m(t)52 c̃m11(t)
at any moment of time. It follows from~22! that the last
relation takes place if

J2cos~ka12um!cosh~2wm!52J. ~23!

Below we will see that in fact the last formula gives a rela-
tion between the soliton parameters and the frequency of the
carrier wave.

Let us now discuss physical aspects of the above findings.
Starting with a one-soliton solution we note thatum50 or
um5p/2. Then takingN51 we obtain

fn
~0!5

kn

g

sinh~2w1!

cosh@2w1~n2n0!2k~J2 /v!sinh~2w1!sin~ka!t#
,

~24!

where n0 is a constant defined byn05(1/2w1)ln@uc1(0)u/
sinh(2w1)]. Thus the space-time evolution of the ‘‘discrete
envelope’’fn

(0) of the one-soliton solution is characterized
by the wave numberK52w1 /a and the frequency
V5(J2 /v)sinh(Ka)sin(ka). Then, calculating the soliton ve-
locity V5k(V/K) with the accuracyO(m) we arrive at the
result V5k(dv/dk). Hence the soliton moves with the
group velocity of the linear carrier wave, but the direction of
its propagation depends onk.

Recalling the requirement~4! we conclude that the choice
of u1 must depend onk. Namely, there is a relation
u15@(12k)/2#p.

Now we are at the point to discuss the small parameter
m. To this end we substitute~24! in ~4! and obtain that the
right hand side of both expressions in~4! is small provided

m5sinh2~2w1!!1. ~25!

As is seen from this formula, the soliton amplitude is not
necessarily very small: it is proportional toAm. It is impor-
tant to note that the last fact coordinates with all the steps of
the perturbative scheme developed above.

In the case at hand the frequency 2(J21J) coincides with
the frequency of the linear spectrum and henceD gives the
shift of the localized-mode frequency with respect to the
spectrum of the linear chain. Formula~24! recovers the so-
lutions found in@6,4#.

Passing to the two-soliton solution, first of all we notice
that as follows from~23! there are no multisoliton solutions
corresponding to different eigenvalueszm located on the
positive real axis~see also the discussion below!. Hence in
order to calculate the two-soliton solution one has to con-
sider a pair of complex conjugate eigenvalues, sayz1 and
z25 z̄1 . For the sake of definitenessu1P@0,p/2# will be
taken. Then, it is straightforward to show that in this case the
solution ~18! takes the form

fn
~0!~ t !5

1

g
„2sin2u1e

zn~ t !$2sinh2~2w1!Asinh2~2w1!1sin2~2u1!sin~2u1n1w1d1!

2sinh~2w1!@cosh~4w1!1cos~2u1!#sin~2u1n1w1d2!%

1sinh~2w1!sin~2u1n1w!@sinh2~2w1!1sin2~2u1!#e
2zn~ t !

…

3$sin2~2u1!cosh
2@zn~ t !1z#1sinh2~2w1!sin

2~2u1n1w1d1!%
21. ~26!

Here

zn~ t !522w1~n2n0!1t
J2
v
sin~2u11ka!sinh~2w1!,

~27!

d15argsinh~2w122iu1!, ~28!

tan
d2
2

52 tan~u1!
cosh2~2w1!1cos~2u1!

sinh~4w1!
, ~29!

z5 ln
sin~2u1!

2Asinh2~2w1!1sin2~2u1!
, ~30!

w5argc1(0) is a real constant, andn0 has been defined
above.

We start the discussion of the two-soliton solution with
the fact that~26! reduces to the one-soliton solution~24! in
the limits u1→0, p/2. The respective solitons have been
interpreted in @4# as different branches of the localized
modes. Now we can generalize that interpretaion by consid-
ering ~24! as different limits of the family of the two-soliton
solutions parametrized byu1 .

The small parameter in the case at hand is determined by
~25!. This is a general result which follows directly from the
explicit expression for the multisoliton solution~18!. Thus
one can say that theintrinsic localized modes are small am-
plitude solitons of the DH equationwhich correspond to ze-
ros of the Jost coefficienta(z) placed in the vicinity of the
unit circle. Moreover, returning once more to the basic re-
quirement~4! we found that the two-soliton solution is coor-
dinated with all suppositions made above only ifu1;Am or
p/22u1;Am. Bearing in mind the two-soliton solution, in
Fig. 1 we schematically represent regions in the complexz
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plane, where the pair of the eigenvalues (z1 ,z̄1) must be
chosen.

The fundamental frequencyv of the localized-mode so-
lution is obtained from the system of equations~7!, ~11!, and
~23!. Considering the branch which lies above the spectrum
of the linearized lattice~17! we calculate

v25J2F S 11
k

2D 1A3qk1A513k

4
1A3~21k!qkG

1O~mJ2!. ~31!

Hereq215p/22u1 andq15u1 . As has been mentioned in
@7# in the case ofk51, u150, the frequency of the localized
mode is less than the frequency of the linear chain,
v lin
2 53J2 . In the case of the two-soliton solution the situa-

tion is changed. Atk51 the frequency increases withu1 and
the critical value at whichv2 turns out to be greater than
v lin
2 is estimated to beuc'0.024. Thus almost in the whole

admissible region of the parameters of the two-soliton solu-
tion ~excluding a narrow neighborhood of the real axis!
v2.v lin

2 .
In the case ofN-soliton solution (N52p, p52,3, . . . )

the relation~23! results in new restrictions of the choice of
the eigenvalueszm . Besides belonging to the region painted
over in Fig. 1, they must be placed on the curve in thez
plane determined byJ. In particular, one can say that the
eigenvalueszm must be placed in the neighborhood of a ra-
diusum5const~the size of the neighborhood is estimated to
be of orderm). In this context returning to the above con-
clusion about the two eigenvalues belonging to the real axis
we can consider respective solutions as approximations to a
four-soliton solution in the ‘‘near degenerate’’ case.

IV. CONCLUSION

To conclude we have shown that the intrinsic localized
modes are governed~in the leading order! by the DH equa-
tion. This gives an explanation of the remarkable stability of
the modes in various numerical experiments, on the one
hand, and, on the other hand, provides us with analytical
tools of the detail and self-consistent study of the localized-
mode dynamics. The latter can be done within the frame-
work of the perturbation theory for solitons. Also, as far as
the model is reducible to exactly integrable@see ~17!# we
were able to represent a multisoliton localized-mode solu-
tion. In solitonic terms a localized-mode solution is param-
etrized by a complex eigenvalue, the phase of which deter-
mines the fundamental frequency while its absolute value
determines the amplitude of the mode.

We have defined the small parameter of the theory and
have shown that the evolution of a nonlinear localized mode
is accompanied by excitation of a linear harmonic@see~15!#.
The DH equation obtained in this paper is intrinsically re-
lated to the AL model which in the continuum limit is noth-
ing but a nonlinear Schro¨dinger equation, appearing in the
theory of envelope solitons. Meantime, it follows from the
above results that any approach based on the envelope func-
tion approximation cannot take into account all features of
the dynamics, especially in the ‘‘highly discrete limit’’
~whenm'0.01–0.1! since the width of a localized mode is
of the order of the square root of the small parameter. The
solutions obtained here are basically different from the con-
ventional pulselike solitons having the form of
sech(kx2vt), known to exist forvn5un112un in the con-
tinuum limit.
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