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Intrinsic localized modes as solitons of the discrete Hirota equation
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It is shown that intrinsic localized modes in a nonlinear lattice with a hard quartic nonlinearity are governed
by the discrete Hirota equation. The requirement for the solution to be real results in a very restricted class of
admissible soliton solutions corresponding to the localized excitations. In particular, it is shown that a single-
soliton solution exists only at definite values of the amplitude and velocity. Two-soliton and multisoliton
localized-mode solutions are reperesented. A small parameter of the problem is discussed.
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PACS numbd(s): 03.40.Kf

I. INTRODUCTION prove that they indeed are dynamical objettés was no-

Since workg 1] where the intrinsic localized modes were ficed in[6,4]), and will allow us to represent multisoliton
obtained a great number of papers devoted to the subject hg8!utions for highly localized modes. ,
been published. In spite of this, to the best of our knowledge, 1he Paper is organized as follows. In Sec. Il we provide

a consistent mathematical theory of the highly localized sothe perturbative expansion, which corresponds to the method

lutions on nonlinear lattices has not been elaborated, while iHSU@lly referred to as the rotating wave approximation. Sec-

most previous investigations various analytical approxima—t'on Il is devoted to the discussion of various soliton solu-

tions were verified numerically. Speaking about the self-ions. The outcomes are summarized in the Conclusion.
consistent theory we mean, first of all, a perturbative expan-
sion of the solutions with respect tmly small parameter at Il. ROTATING WAVE APPROXIMATION
all stagesof the so-calledrotating wave approximatian
Therefore the first aim of the present paper is to provide sucIEb
an expansion.

The second purpose of the paper is to show that the in-

We study a monoatomic lattice described by the Hamil-
nian

trinsic localized modes in the leading order @@itonsin H=>, Muﬁ+ &(un+1_un)2+ &(unﬂ—un)“ '
the narrow mathematical sense, i.e., that they are governed no|2 2 4
by an exactly integrable equatigand in this sense they can (1)

be considered as a counterpart of the envelope lattice solitons ) ] )

[2]). As a matter of fact, a deep relation of the intrinsic Whereup,=uy(t) is a displacement of theth atom having a
localized modes with solutions of the Ablowitz-LadigL)  massM, K, andK,4 are harmonic and quartic anharmonic
model[3] has been realized in the pap@4s5]. However, no force constants, correspondingly, and a dot stands for the
one has yet reported directly obtaining the AL model startingderivative with respect to time. Looking for a displacement
with a lattice Hamiltoniar{see(1) below]. Here we fill the  field which allows representatidi,4]

gap in the theory and show that the most convenient analyti-

cal treatment of the intrinsic localized modes can be given in Un+1—Un=2¢n(t)cogkna—wt), 2
terms of the discrete Hiroté€DH) equation, which, mean-

time, is consistent with the AL model mentioned [i,4]. dn(t) being an unknown functiork and w being constant
This will give us an explanation of the stability of the local- wave number and frequency, aadbeing a lattice constant,
ized modes observed in numerical experimdms|, will one obtains the following dynamical equation fo5(t):

|
{bn— 02pn— o[ (Pns1+ dn-1)c0gka) —2¢,]—3J4[(p3, 1+ ¢ 1) cogka) —2¢3] cod yn,)
+{20hn+ Io( b1~ bo-1)siN(ka) +334( 2, 1— p3_ )sin(ka)sin(g,) +Iu( 2, 1 — #3_)sin(3ka)sin(3;,)
—JJ[(p2, 1+ ¢3_,)cog 3ka) — 243]cog 3¢,) =0. 3

Here y,=kna— wt is a “rotating” variable, and); ;=K 4/M.
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Let us define a small parameter, of the problem through the relations

bni1t Pno1—2kpy=puf,, ¢n+l¢nfl_¢ﬁ:ﬁ*gns 4

wherexk=*+1, f,, andg, are functions of the order af, and ¢ﬁ, respectivelyf,=0O(¢,) andgn=0(¢ﬁ). Notice,a priori,
¢, is not assumed to be small. Formuld$, which are assumed to be consistent, determine the basic approximation explored
below.

If we concentrate on the pointsa= 7/3 and ka=2=/3, then the coefficient of sin(@) in (3) describing the cubic
harmonic becomes zero. By usifd) it is not difficult to show that the last term i(8) is of the order of,uqsﬁ if x is chosen
such that it is 1 foka=2#/3 and is—1 for ka= 7/3. Hence taking into account that the respective term represents a cubic
harmonic we can drop [9].

Roughly speaking, after the above approximation the coefficients multiplied by the sine and cosine fundBpnisdimg
simultaneously equated to zero, constitute a pair of equations determining both the space-time evolution of the localized
intrinsic modes, i.e.¢p,,, and the fundamental frequeneay, respectivel{4,6]. (It is assumed, of course, that these equations
are coordinategl.Then, the point&ka= 7/3,27/3 may be considered as corresponding to particular points in the Brillouin zone
of the underlying harmonic lattice, at which mixing of the fundamental modearrier wave, as it is sometimes calledth
higher harmonicgwith frequency ) vanishes.

For the next step we introduce designations

an=dn—Adn—334[ (dns1+ bn-1) (P2, 1+ P2 1= 32— Pni1dbn_1)cogka) — 247, (5)
Bn=33[¢3. 1= #3 1= 3(Pni1— dn_1) 2lsin(ka), (6)
A=w?—2(J,+ ), (7

¥?=9J,1J3,, whereA and 7 are real constants to be determined below. T¢®ris rewritten as

(~ 27— 1,c09Ka) (s 1+ b 1) (L+ Y2h2) + cn}COSI+ {20 b+ IoSIN(KA) (B 1 — by 1)(1+ y2¢ﬁ>+ﬂn}sin¢n=?.)
8

Taking into account that all quantities {B8) are real, it is not difficult to conclude that the mentioned equation can be written
down in the complex form

{12T¢ha+13,008Ka) (b 1+ Bn_1)(1+Y2h2) — i+ 2w+ IoSINKA) (b 1— o 1) (1+ Y2 h2) + Byel¥n+c.c=0.
(9)

The main advantage of the last equation comes from theve reduceg10) to
fact that ata,,=B,=0 it takes the form of the DH equation
integrable by means of the inverse scattering techniigQg . Jg
This allows us to proceed in the following way. First, we ¢n=#KWCO§(ka)fn+ O(u2¢bn).
show that under the assumption that in the leading order
¢, solves(9) with a,=8,=0 and subject to appropriate
choice of the solution the terms,, and 8, can be made
small enough. Then we represent various solutions for the
localized modes in the leading order as solitons of the DH
equation and discuss the small parameter of the problem.
To this end we notice that it is a direct consequencetpf

Hence the term under consideration is estimated as

JZ
= x5 7008(Ka)fo+O(u2hy) + O(ud). (12

that 8,=0(u%?¢2) + O(u2¢?2). In order to estimater,, we As will be shown belowg2=0(u) and that is whyx,, is
take into account that(4) implies f,, ;+f,_1—2«f, comparable with the nonlinear terms (8) and cannot be
=0(udy). This allows us to obtain dropped. Meantime, looking for the solution @) in the
form
b —| 22 coqk 2 2 + 8] — A
bn= ZwCOE( Q)| [2(Pns1t dn-1)—8dn]—Ad, b= O+ uph) (13
+0(u’dy). 10
(1) (19 where ¢(?) and (") are of the order of, and ¢ solves

By choosing the equation

J2 J
A=— Kfzcosz(ka) (11) 2761 + J,coqka) (L) + ¢V ,) = Kz—cjzfn . (1)
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we can eliminate the higher order contributiondg, with-
out any changéin the leading orderof the term in(8) which Imz
is proportional to sifl,. The last statement is a consequence
of the explicit form of (M

)

J
¢#):2Kﬁi,zm§,wfnfm[f«ﬁ—zn‘m‘, (15

of the representation fafr,, and of the fact that within the
accuracy accepted

20¢ 0+ ,sin(ka) (%, — 621 =0($).

One more important consequence(d$) to be mentioned
here is the fact that if5{*) is bounded in time and localized
in space, theraj;gl) possesses the same properties.

Now introducing a complex function

s (16)

B J
Gn="yexp it

we arrive at the conventional form of the DH equation, FIG. 1. The pOIygonS painted over Correspond to regions where

which in the case at hand describes the particle displacemefe complex conjugate pairs Zm) can be chosen in order to
field fulfill all the requirements imposed in the derivation of the DH

equation. The regions near the imaginary and real axes correspond
to the carrier wave numbers/3 and 27/3. By ~ Ju we emphasize

.o d J;
Qnti ﬁcos{ Ka)(Qne1+qn-1)(1+|gn?) + ﬁsm( ka) the characteristic scale of the respective regions.
X(On+1—qn-1)(1+]qn/?)=0. (17) m=1,... N, are eigenvalues of the problem
I1l. SOLITON SOLUTIONS FOR THE LOCALIZED o = z 'O o (20)
MODES mhligy 7t

Let us analyze the “unperturbed” equatioh?). First, it  placed inside the unit circle on the right half plane of the
is interesting to mention that due to the special relation becomplex z (respectively,w,, and é,, are real,w,,>0 and
tween the constant coefficients it is reduced to the AL model- 7/2< §,,<n/2, see Fig. 1,
by the substitutiom,=e'*"3Q, . However, in such a way the
rotating phasey,, appears in the dynamical equation again (zmz)"*t
and the functiorQ,, has an initial form different from that of am(n)= ﬁ
¢, . Due to this reason in what follows we prefer to deal me
with the DH equation rather than with the respective AL and the coefficients,, depend on time according to the for-
model. Next, we notice that in spite of the fact that the DHpy,1a
equation is integrable not all its solutions make physical
sense. A very strong restriction comes from the requirement J,
for ¢, to be real. Cm(t):Cm(o)eXF{lt -, C08420m+ ka)costhm)}

In order to explain the last statement let us consider some
points of the inverse scattering scheme applied to the DH NP )
equation. A multisoliton solution can be written in the form Xexp{t;sm(zeerka)smHZWm)
(see[11] where a multisoliton solution for the AL model is
represented In (18) N is a number of eigenvalues (20) in the right half
plane.

We are interested in solutions of the Cauchy prob{ém
subject to real initial conditions Igy(0)= 0. The complexity
is allowed to appear with time only through the harmonic
Here D is an NXN matrix with the element exponentexp(J/w)t] [this gives a realybff’), see(16)]. The
ij=5kj+42|”:1a|k(n)a,j(n)cka(ékj being the Kronecker mentioned initial condition implies thdi) the eigenvalues
delta and the bar standing for the complex conjugation either appear only in complex conjugate pairs, say
D" is obtained fromD by substituting thdth column in  #n=—60m1 and Wy=Wy,,, Or are placed on the real,
D by coI(zQ’l, L ,zf,\‘fl , 0,=0, or imaginaryé,,= w/2, axes, and correspondingly

(ii) the respective coefficients,(0) either satisfy the rela-
Zm=exXp—Wpy+16,,), (19)  tion cy(0)=—Cpn41(0) orc,(0) is pure imaginary. Taking

(21)

. (22)

. N
2i
qn=@2 ¢,z tdeD . (18
I=1
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into account thak,, does not depend on time, from the ex-  Recalling the requiremertd) we conclude that the choice
plicit form (18) one concludes that the above requirementof §; must depend onk. Namely, there is a relation
for the solution of the DH equation are fulfilled if ¢,=[(1—«)/2].

Cm(t) =Crm(t)exdi(Jw)t], where in the case of complex  Now we are at the point to discuss the small parameter
conjugate pair£y(t) holds the propertyy(t)=—Cn:1(t) 4. To this end we substituté24) in (4) and obtain that the

at any moment of time. It follows front22) that the last right hand side of both expressions(i#) is small provided
relation takes place if

J,cogka+26,,)cosh2w,,)=— 7. (23 w=sink(2w,)<1. (25)

Below we will see that in fact the last formula gives a rela-

tion between the soliton parameters and the frequency of the ) ) . )

carrier wave. As is seen from this formula, the soliton amplitude is not
Let us now discuss physical aspects of the above findingdiecessarily very small: it is proportional tg. It is impor-

Starting with a one-soliton solution we note tht=0 or  tantto note that the last fact coordinates with all the steps of

6,,= /2. Then takingN=1 we obtain the perturbative scheme developed above. o _
In the case at hand the frequencyl2{ ) coincides with
©0)_ K" sinh(2wy) the frequency of the linear spectrum and heAcgives the
n ~ ¥ costi2w;(n—ng) — k(J,/w)sinh(2w,)sin(ka)t]’ shift of the localized-mode frequency with respect to the

(24) spectrum of the linear chain. Formu(24) recovers the so-
lutions found in[6,4].

where n, is a constant defined byg=(1/2wy)In[cy(0)// Passing to the two-soliton solution, first of all we notice
sinh(2w,)]. Thus the space-time evolution of the “discrete that as follows from(23) there are no multisoliton solutions
envelope” ¢{¥) of the one-soliton solution is characterized corresponding to different eigenvalues, located on the
by the wave numberK=2w;/a and the frequency positive real axigsee also the discussion belpwience in
QO =(J,/w)sinhKa)sinka). Then, calculating the soliton ve- order to calculate the two-soliton solution one has to con-
locity V= «(£2/K) with the accuracyD(u) we arrive at the sider a pair of complex conjugate eigenvalues, saynd
result V= k(dw/dk). Hence the soliton moves with the z,=z,. For the sake of definitenes®, €[0,7/2] will be
group velocity of the linear carrier wave, but the direction oftaken. Then, it is straightforward to show that in this case the
its propagation depends on solution (18) takes the form

»Q(t)= %(2sir?aleén<t>{2sinﬁ(2wl) Jsint?(2w,) +sir?(26,)sin(26,n+ ¢+ 5;)

—sinh(2w,)[ cosi{4w,) +cog26;)]sin(26,n+ ¢+ 55)}
+ sinh(2w,)sin(26;n+ @)[ SinFP(2w,) + sir?(26,) Je~ V)
X {sir?(26;)cost[ £,(t)+ {1+ sint?(2w,)sirf(26,:n+ ¢+ 8;)} L. (26)

Here We start the discussion of the two-soliton solution with
the fact that(26) reduces to the one-soliton solutié®4) in
NP _ the limits #;—0, 7/2. The respective solitons have been
¢n(D)=—2w,(n—no) +t—sin(26, +ka)sinh(2wy), interpreted in[4] as different branches of the localized
27) modes. Now we can generalize that interpretaion by consid-
ering (24) as different limits of the family of the two-soliton
_ . . solutions parametrized b, .
dy=argsin2w, —2i6y), (28 The small parameter in the case at hand is determined by
(25). This is a general result which follows directly from the
costf(2w;) +cog26,) 29 explicit expression for the multisoliton solutiofi8). Thus
one can say that thatrinsic localized modes are small am-
plitude solitons of the DH equatiowhich correspond to ze-
2 ros of the Jost coefficierd(z) placed in the vicinity of the
In Sin(26) (30) unit circle. Moreover, returning once more to the basic re-
2+/sint?(2w,) + sir?(26,) ’ quirement(4) we found that the two-soliton solution is coor-
dinated with all suppositions made above onlyjf-+/u or
e=arge,(0) is a real constant, and, has been defined =/2—6;~\u. Bearing in mind the two-soliton solution, in
above. Fig. 1 we schematically represent regions in the complex

62
tanz- =2 tar(6y) sinh(4w;) ’
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plane, where the pair of the eigenvalues ,g;,) must be IV. CONCLUSION
chosen.
The fundamental frequenay of the localized-mode so- To conclude we have shown that the intrinsic localized

lution is obtained from the system of equatidis (11), and  modes are governefin the leading ordgrby the DH equa-
(23). Considering the branch which lies above the spectruntion. This gives an explanation of the remarkable stability of

of the linearized latticg17) we calculate the modes in various numerical experiments, on the one
573 hand, and, on the other hand, provides us with analytical

2=, | 1+ = |+ 39+ \/ B2, tools of the detail and self-consistent study of the localized-

2 4 mode dynamics. The latter can be done within the frame-

+0(udy). (31) work of the perturbation theory for solitons. Also, as far as

the model is reducible to exactly integralfleee (17)] we

Hered_,=w/2— 0, and9,= 6,. As has been mentioned in were able to represent a multisoliton localized-mode solu-
[7] in the case ok =1, §,=0, the frequency of the localized tion. In solitonic terms a localized-mode solution is param-
mode is less than the frequency of the linear chaingtrized by a complex eigenvalue, the phase of which deter-
wﬁn=3J2. In the case of the two-soliton solution the situa- mines the fundamental frequency while its absolute value
tion is changed. Ak=1 the frequency increases with and  determines the amplitude of the mode.
the critical value at whichw? turns out to be greater than ~ We have defined the small parameter of the theory and
wi, is estimated to b&,~0.024. Thus almost in the whole have shown that the evolution of a nonlinear localized mode
admissible region of the parameters of the two-soliton soluis accompanied by excitation of a linear harmdrsiee(15)].
tion (excluding a narrow neighborhood of the real axis The DH equation obtained in this paper is intrinsically re-
0> b, . lated to the AL model which in the continuum limit is noth-

In the case ofN-soliton solution N=2p, p=2,3,...) ing but a nonlinear Schdinger equation, appearing in the
the relation(23) results in new restrictions of the choice of theory of envelope solitons. Meantime, it follows from the
the eigenvalueg,,. Besides belonging to the region painted above results that any approach based on the envelope func-
over in Fig. 1, they must be placed on the curve in the tion approximation cannot take into account all features of
plane determined by/. In particular, one can say that the the dynamics, especially in the “highly discrete limit”
eigenvalueg,, must be placed in the neighborhood of a ra-(when u~0.01-0.] since the width of a localized mode is
dius 6,,= const(the size of the neighborhood is estimated toof the order of the square root of the small parameter. The
be of orderu). In this context returning to the above con- solutions obtained here are basically different from the con-
clusion about the two eigenvalues belonging to the real axisentional pulselike solitons having the form of
we can consider respective solutions as approximations to sechkx— wt), known to exist forv,=u,, 1— U, in the con-

four-soliton solution in the “near degenerate” case. tinuum limit.
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